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The effect of oscillation on flat plate heat transfer 
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The time-mean heat transfer of the incompressible laminar boundary layer on a 
flat plate under the influence of oscillation is studied analytically. Flow oscillation 
amplitude outside the boundary layer is assumed constant along the surface and 
the viscous dissipation effect is considered. First, the small velocity-amplitude 
case is treated and the approximate formulae are obtained in the extreme cases 
when the frequency is low and high. Next, the finite velocity-amplitude case is 
treated under the condition of high frequency and it is found that the formulae 
obtained for the small amplitude and high frequency case are also valid. These 
results show that, when the oscillation is of high frequency, the time-mean heat 
flux to the wall can be several times as large as that without oscillation. This is due 
wholly to the viscous dissipation effect combined with oscillation. 

1. Introduction 
In a recent paper Ishigaki (1971) studied the effect of oscillation on the time- 

mean skin friction and adiabatic wall temperature of a flat plate, and confirmed 
the earlier result by Stuart (1955) that viscous dissipation has a large effect on the 
time-mean temperature field when the oscillation is of high frequency. In  the 
present paper the corresponding heat transfer problem is studied and it is shown 
how the viscous dissipation combined with oscillation affects the time-mean 
heat transfer from or to the wall. 

Heat transfer under the influence of vibration and flow oscillation (also sound) 
has been the subject of much research since the early 1950’s. One of the practical 
problems which inspired interest in the effect of oscillation on heat transfer is 
encountered in liquid rocket and turbo-jet engines. When a high frequency 
combustion oscillation occurs in such engines, the heat flux to the engine wall 
increases abruptly and the wall temperature often rises to the melting point of 
material. This causes the failure of liquid rocket engine combustion chambers, 
propellant injectors and turbo-jet engine after-burners shortly after the onset of, 
so-called, screaming or screeching combustion. 

Theoretical study on a fluctuating heat transfer of a periodic boundary layer 
with an on-coming stream has been made by many authors, e.g. Lighthill (1954), 
Ostrach (1955), Illingworth (1958). AS to the time-mean heat transfer, studies 
were made for flat plate flow with small amplitude and low frequency oscillation 
by Moore & Ostrach (1957), Kestin,Maeder & Wang (1961). The time-mean heat 
transfer in a wedge-type flow with small amplitude oscillation was studied by 
Gersten (1  965). The effect of a longitudinal acoustic field on the time-mean heat 



538 H .  Ishigaki 

transfer in a parallel plate channel was studied by Keith & Purdy (1967). The 
time-mean mass transfer problem in fully developed flow in a tube with a 
small periodic pressure gradient was studied by Fagela-Alabastro & Hellums 
(1969). 

In  these time-mean studies except that of Moore & Ostrach, the viscous 
dissipation effect was neglected. Therefore the effect of flow oscillation on the 
time-mean temperature field of incompressible fluid brings out the following two 
additional heat flux: (i) due to the convection by the secondary flow induced by 
the Reynolds stresses (e.g. - UIZI)); (ii) due to the correlations of fluctuating velocities 
and temperature, e.g. u'T; here u', v' are the fluctuating velocities, T' is the 
fluctuating temperature and the over-bar denotes an average with respect to 
time. Inferring from the above-mentioned works it may be said that the effect of 
these two factors on the time-mean temperature field is rather small. In  this 
paper the third factor of viscous dissipation is considered simultaneously and its 
predominance at high frequency is shown. In  the paper by Moore & Ostrach the 
treatment was restricted to low frequency oscillation, so that the effect of viscous 
dissipation is of comparable order of magnitude with the above two factors. 

2. Basic equations 
Let us consider a two-dimensional unsteady laminar boundary layer with 

viscous dissipation of an incompressible fluid with constant properties. Let x and 
y denote the co-ordinates parallel and normal to the wall, and u, v the corre- 
sponding velocity components. I n  addition, let T denote temperature, t time, 
v kinematic viscosity, K thermal diffusivity, c specific heat, and U(x,t) the 
external flow velocity. 

We define functions $ and 8 by 

u = a$lay, v = -a@/ax, 8 = (T - T,)/(Tw - T,), (1) 
in which T, denotes the wall temperature and T, the external flow temperature 
(both are constant). Then the boundary-layer equations for velocity and tempera- 
ture may be written in the forms 

az$ a$ a=$ a$az$ au au a3@ -+------ --+U-+v--, 
atay ay 2xay ax 2y2 at ax ay3 (2) 

Letting w denote frequency and E velocity-amplitude ratio, we shall confine our 
attention to the function U(x, t )  of the form 

U = U,(1 +Eeiwt),  (4) 

which is independent of x and in which only the real part has the physical 
meaning. Further restriction on either E or w may be needed when these equations 
are tackled. 
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3. Small velocity-amplitude case 
When E is smaller than unity, we may develop the function $ and 0 in the fornis 

$(GY, t )  = 4 0 ( ~ , Y ) + ~ ~ l ( ~ , Y ) e i w t + ~ 2 { p ~ ( ~ , Y )  +$z(X,Y)e 2iwt 1 + 0 ( € 3 ) , }  (5) 

e (x ,  y ,  t )  = Bo(x, y )  + Eel(x, y )  eiWt + E ~ { B ~ ( X ,  y )  + B2(x, y)e2iwt} + O(e3),  

where only the real parts are to be taken. Substituting (4), (5) into ( 2 ) ,  (3) and 
equating the same order of 8, sets of equations are obtained. The equations for 
4, and 8, are the steady-state equations and the solutions are the following 
well-known functions : 

$0 = (2vurnX)’f(7), 00 = h(7) + rm, 7 = (urn/2vx)*y, (6) 

in which I’ = vZ,/{2c(Tw - !Frn)}. The equation for 8, is 

el= 0 at y = 0, el= 0 as y+m. 

Approximate solutions have been obtained in the extreme cases when the 
frequency parameter r~ = wx/Urn is small and large. For small value of g the 
results of Moore (1951) and Ostrach (1955) can be particularized as 

For large value of CT, the method due to Illingworth (1958) may be appropriate. 
If 01 = (2 ir~) -4  and /3 = (iw/v)*y, may be written 

$1 = urn(v/iu)Q C angh, n(P), 01 = C ““{kh, ,(PI + I’w~, n(P)}. ( 9 )  
n=O n=O 

Provided that a is small and /3 is not too large, the following approximations are 
made when 7 = UP is considered: 

] (10) 
f(olP) = +a”P”f”(O) + O(a5), h(u/3) = 1 + uPh’(0) + O(a4), 

s(ap) = aps‘(o) + +-q2syo) + o(a4) 

in which primes denote differentiation. Substituting (9), (10)  into (7), ordinary 
differential equations are obtained for each order of a, and the solutions which 
satisfy the boundary conditions at  P = 0 are 

in which P r  = V / K  is the Prandtl number. For the amplitude and phase angle of 
fluctuating heat transfer of order c under the condition of negligible viscous 
dissipation, the reader may refer to the results of Illingworth and Gersten. 
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where subscripts r and i denote the real and imaginary parts of a. function. For 
small value of c appropriate forms may be written as 

$s = (2amx)* c f12nGl, 2n(7),  0s = c c72n{K1,2n(7) + rK,2n(r)} (13 )  
n=O n=O 

in which Kl, and v, are the following quasi-steady terms : 

. K l , o  = i$(-rh’+y2h’’), q , o  = & ( 8 ~ + 7 7 ~ ’ + 7 ~ ~ ’ ’ ) .  

The equation for Kl, was solved by Gersten. The equation for e, is 

1 
- Pr ?y2+fWi’,,-4f’W,2 = -5~‘G~,2-4fG;:~+2g;:oo;~- (g;1)2+&,24,0 

+ s2I 1 WI, 1 - %,3 1 4 1  - 2g;,ow1.2 + i b l ,  ow;, 2 

and is solved numerically. For large value of (T we let 

O S ( ~ ,  y )  = Kh(x, y) f rwh(x, y ) .  (14) 

Substitutions of (9), (10) and ( 1 1 )  into (12)  yield the equation for Kh as 

K h = o  at y = o ,  K h = o  as Y+W, 

in which z = (w/2v) ty .  Then the particular solution Khp is 

Pr 
-{cos Prsz-sinPrBz)e-Prgz+--__ {(Pr+2Pr*- 1)cos(1-Prfr)z 

(1 + Pr)2 
+ (Pr - 2pr* - 1) sin ( 1  - ~rt)z)e-(1+~&)21+ 0 ( ~ - 4 ) .  (16) 

Therefore the contribution of homogeneous solution to the time-mean heat 
transfer is of the order of d a n d  is neglectedin the after heat transfer estimation. 
The equation for wh is 

Wh= 0 a t  y = 0, Wh = 0 as y-too. 

The particular solution wh, is 

vLp = - &Pre-2z+O(d). (18) 
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Then the homogeneous solution W,, may be expressed as 

The equation for Q(7) is 
K, = Q(7) + O(a-8). 

(1/Pr) &” +fQ’ = 0, 

Q = gPr at y = 0, Q = 0 as y+oo 

and the solution is 
in which h(7) appears in (6). 

Q = + P r h ( ~ ) ,  
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FIGURE 1. Plot of H with frequency parameter u. 

We can now obtain the approximate expression of the time-mean heat transfer. 
We write the time-mean heat flux from the wall as 

- q = -- in /02n4aT/aY),=,dt 

= - A(T, - T ~ )  ( u m / 2 ~ 4 ~ [ v ( 0 ) { i  + a ( a ) )  + w ( o )  {i + a(a)) ]  + 0 ( € 4 )  (20)  

H ( a )  = -&-O-4137a2+O(a4) (small a)  ( 2 l a )  

in which h is the thermal conductivity. For Pr = 0.72 w0 have 

0.0459 
a2 

- - -___ + O(o-8) (large a) 

and #(a) =+#+ 1.3665a2+O(a4) (small a)  

= 2.0135 (a)* - 0.4247 f O(a-l) (large g). (22b)  

Functions H ( a )  and #(a) are shown in figures 1 and 2, and in figure 2 the asymp- 
totic value for very large a, first b r m  only in (22 b),  is also shown by a broken line. 
It can be seen that the contribution of H ( a ) ,  which decreases abruptly with the 
increase of  a, to the time-mean heat flux is much smaller than that of #(a) for 
high frequency oscillations. 
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FIGURE 2. Plot of S with frequency parameter c. 

4. Finite velocity-amplitude case 

Lin (1 957) is possible. In  (3) we separate 8 into two functions 
Making some assumptions mainly on the frequency, another approach due to 

6(x ,  9, t ,  = oh(x, y, t ,  + op(x, Y, t ) ,  (23) 

in which 8, is a solution of the homogeneous equation and 8, is a particular 
solution of (3). Moreover, we express the functions as the sum of a time-mean 
and a time-dependent component as 

(24) 1 $(x, Y, t )  = $(x, Y) + ll't(2, y, t ) ,  
Oh@, Y, t )  = Y) + % t ( X ,  Y, % 
8&, - Y, t )  = - gpcx, Y) + 8,,(., Y, t ) ,  
1C.l- = 8ht = opt = 0, 

where a bar over the symbols denotes time-mean quantities. Substituting (24) 
into (3) and taking its time average, the time-mean equations are obtained. 
Subtracting these from the full equation (3), the time-dependent equations are 
obtained. The equations and boundary conditions for 8 h  and Oh, are 

- - 
8, = 1, oh, = 0 at y = 0,  8,& = S,, = 0 as y-zm. 

The equations and boundary conditions for Bp and Opt are 



543 

In the case of high frequency, under the assumptions 

U B  l , E  (29) 

the approximate expressions of and $t are given as 

(30) 

- 
II, = $0 = (2vUmx)Jf(rf,  
$t = ~U,(v/iw)l{y(iw/v)J - 1 + exp ( - y(iw/v)B)}eiut. 

In (26 )  the relative order of magnitude between oh,  and 8 h  can be estimated as 

Moreover, in (25), assuming 

the approximate solution is obtained as 

8, = h(7) .  (32) 

There it follows that the effect of high frequency oscillation on gh may be negligible 
to the first approximation. Then, after neglecting the convective terms in (26) 
under the assumptions (as) ,  the equation for 8, becomes 

An approximate method similar to (9)) (10) gives the same result as the small 
amplitude case, that 

( 2  + (1 - P r ) y ( i w / v ) J }  exp ( -y( iw/v)J)  
Pr 

exp ( - y( iwPr/v) t )  eiut. (34) 1 2Pr -- 
(1 - 

Using the above solutions as the first approximations, further solution is possible, 
and the results of the second approximations are the same as those of the small 
amplitude case. 

In  (28)  the convective terms are neglected to the first approximation under the 
conditions 
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Moreover, an assumption is made that 

that is, E is not too small. The simplified equation is 

(36) 

(37) 

and the solution is 

[exp { - y(2ioPr/v)t} - exp - 2y(iw/v)t}]e2iut. (38) 

It can be seen that the second harmonic fluctuation which is independent of 
x becomes predominant and the amplitude of fluctuating heat transfer is pro- 
portional to the square root of w .  Substituting (30), (38) into the left side of (27), 

e2Prr 
= i ( 2  - pr) 

- 
If we let o p  = r{8p, + 8 p h }  (40) 

function BpU can be reduced to s(y) in (6) and gPb toW,(x, y) in (17), and the time- 
independent result is the same as that of the small amplitude case in spite of the 
difference of the fluctuating results. Thus the assumption in (35) becomes clear as 

(+ 9 E B , / ~ ~ ,  or (+ >> €2. 

5.  Concluding remarks 
The calculations described above are intended to demonstrate the large 

influence of viscous dissipation combined with high frequency oscillation on the 
time-mean heat transfer. The approximate formulae for large (+ obtained for 
small amplitude oscillation, (21 b)  and (22b), are also valid for finite amplitude 
oscillation. In  connexion with the high frequency results, the following brief 
discussions may be helpful. When the wall temperature is higher than the external 
flow temperature, the viscous dissipation effect may counteract the convection of 
heat from the wall. Then, from (20), the time-mean heat flux from the wall qa 
is asymptotically given, for very high frequency and Pr = 0.72, as 

ijU 0.4180- 0.3545r( 1 + 2.03i5q0)q 
!IOU 0 . 4 1 ~ 0  - 0.3545r (Tw > T m )  (41) _ -  - 

in which qoa is the heat flux without oscillation. It is anticipated that the reversal 
of heat flow can easily occur. The critical value of this reversal is obtained by 
letting a, equal zero in (41) and is shown in figure 3, in which iju > 0 shows that the 
heat flows from the wall to gas and ij, < 0 vice versa. When the external flow 
temperature is higher than the wall temperature, the heat generated by viscous 
dissipation may be superimposed on the convecting heat. Then, from the modifi- 
cation of (20), the heat flux to the wall q b  is given 

- 041so+ o.3545rh(1 + 2.0315€2(+) _ -  %I - 
q O h  0.4180 + o.3545rb ( T m  > Tw), (42) 
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in which qob is again the heat flux without oscillation and rb = U2,/2c(T, - T,) 
= - I?. The ratio qb/qOb is shown in figure 4, and it can be seen that the heat flux 
for large rb and e2((r)* can be several times as large as that without oscillation. 
These large influences of viscous dissipation can be explained mathematically as 
follows. The fluctuating friction is proportional to the square root of the fre- 
quency and it enters into the dissipation term of the energy equation in square 
form. Therefore it has a larger influence at higher frequency in the time-mean' 
energy equation. 

?"< 0 

I I I I I 
1 2 3 4 5 0.0 I 

0 

s2( cT)* 

FIQURE 3. Critical value of heat flow reversal. 
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FIGURE 4. Increase of heat flux to the wall as a function of 
oscillation parameters for several values of rb. 
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